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Abstract
The general properties of two-dimensional generalized Bessel functions are
discussed. Various asymptotic approximations are derived and applied to
analyse the basic structure of the two-dimensional Bessel functions as well as
their nodal lines.

PACS number: 02.30.Gp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Generalized Bessel functions depending on several variables were introduced in 1915 for a
finite [1] and also an infinite number of variables [2]. They have very similar properties as the
ordinary Bessel functions but are much less familiar.

More recently, however, two-variable Bessel functions have found an increasing number
of applications in various areas of physics (see, e.g. [3–13]). The basic theory of generalized
Bessel functions is described in a monograph by Dattoli and Torre [14]. Our own interest
into the properties of these functions is caused by our recent studies of quantum dynamics in
periodic structures [11, 12], in particular in studies of transport and dynamic localization [15].

In most cases these applications were restricted to the case of two variables, u and v.
Then the generalized Bessel functions J

p,q
n (u, v) are labelled by three integer indices n, p, q.

The theory of these functions has been discussed, within the framework of a group theoretic
treatment, in the book by Dattoli and Torre [14] and in [16].

The special case (p, q) = (1, 2) has been considered up to now almost exclusively
[5, 8, 10, 14, 17–19]. Here we will analyse the two-dimensional Bessel functions J

p,q
n (u, v)

for general indices p and q (see [20] for a well-written introduction to the case of infinite
variables; it should also be mentioned that one-variable functions J

p,q
n (x), with p, q relatively

prime integers, have been discussed already in 1964 [21]).
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We will derive the fundamental properties of the two-dimensional Bessel functions and
analyse their basic structure for small and large arguments in the following sections. It will be
seen that the two-dimensional Bessel functions show a rich oscillatory structure with regions
of very different behaviour. We will analyse these structural features with special attention
to the nodal lines which are of considerable importance for recent applications to localization
phenomena in quantum dynamics [15].

2. Basic properties

In this section we will collect the basic properties of the generalized Bessel functions J
p,q
n (u, v)

with integer indices n, p, q and two real arguments u, v. Most of the results in the literature
(see, in particular, appendix B of [5] and chapter 2 of [14]) have been derived for the special
case of J 1,2

n (u, v) .

2.1. Definition

The two-dimensional Bessel functions can be defined by the generating function

ei(u sin pt+v sin qt) =
∞∑

n=−∞
Jp,q

n (u, v) eint , (1)

also known as a Jacobi–Anger expansion, or, somewhat more general, as

exp
(u

2
(zp − z−p) +

v

2
(zq − z−q)

)
=

∞∑
n=−∞

Jp,q
n (u, v)zn. (2)

Integration of (1) over t using
∫ +π

−π
dt eint = 2πδ(n) immediately leads to the integral

representation

Jp,q
n (u, v) = 1

2π

∫ +π

−π

dt ei(u sin pt+v sin qt−nt), (3)

a generalization of the integral representation of the well-known ordinary Bessel function

Jn(x) = 1

2π

∫ +π

−π

dt ei(x sin t−nt). (4)

From the properties of Fourier series we find the bounds∣∣Jp,q

0 (u, v)
∣∣ � 1 and

∣∣Jp,q
n (u, v)

∣∣ � 1/
√

2 for n �= 0. (5)

As an immediate consequence of (3) the integers p and q can be assumed to be coprime
because J

p,q
n vanishes otherwise or it can be reduced to such a coprime case. This is seen as

follows (we assume that µ is an integer, 0 �= µ �= 1):

2πJµp,µq
n (u, v) =

∫ 2π

0
dt ei(u sin µpt+v sin µqt−nt)

=
∫ 2πµ

0

ds

µ
ei(u sin ps+v sin qs−ns/µ) =

µ∑
m=1

∫ 2πm

2π(m−1)

ds

µ
ei(u sin ps+v sin qs−ns/µ)

=
[

µ∑
m=1

e−i2π(m−1)n/µ

] ∫ 2π

0

ds

µ
ei(u sin ps+v sin qs−ns/µ). (6)
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Using
µ∑

m=1

e−i2π(m−1)n/µ =
{
µ for n/µ ∈ Z

0 else
(7)

and, for n/µ ∈ Z,∫ 2π

0

ds

µ
ei(u sin ps+v sin qs−ns/µ) = 1

µ
J

p,q

n/µ(u, v) (8)

one obtains

Jµp,µq
n (u, v) =

{
J

p,q

n/µ(u, v) for n/µ ∈ Z

0 else.
(9)

In the following, we will therefore assume that the integers p and q have no common divisor.

2.2. Decomposition in terms of ordinary Bessel functions

A representation in terms of ordinary Bessel functions can be derived from the integral
representation (3). Inserting the generating function for the ordinary Bessel functions

eix sin s =
∞∑

n=−∞
Jn(x) eins (10)

for both s = pt and s = qt into (3), we obtain

Jp,q
n (u, v) = 1

2π

∫ +π

−π

dt ei(u sin pt+v sin qt−nt)

=
∑
µ,ν

Jµ(u)Jν(v)
1

2π

∫ +π

−π

dt ei[(µp+νq−n)t]. (11)

The integral is only different from zero if n = µp +νq is satisfied. If p and q have no common
divisor as assumed here, a solution (µ, ν) = (M,N) of this Diophantine equation always
exists and can be found systematically by, e.g., the Euclid algorithm [22]. Moreover there is
an infinite number of solutions µ = M − qk, ν = N + pk, k = 0,±1,±2, . . . because of

n = pM + qN = pM + qN + pqk − pqk = p(M − qk) + q(N + pk).

We therefore have

Jp,q
n (u, v) =

∞∑
k=−∞

JM−qk(u)JN+pk(v), (12)

where (M,N) is an arbitrary solution of n = pM + qN .
For the case p = 1 this reads (M = n and N = 0)

J 1,q
n (u, v) =

∞∑
k=−∞

Jn−qk(u)Jk(v). (13)

These functions, denoted as J
q
n (u, v), appear as a by-product of the theory of Hermite Bessel

functions. J
p,q
n (u, v) can be written in terms of J

q
n (u, v) according to the identity

Jp,q
n (u, v) =

∞∑
k=−∞

J
p

n−k(ν, u)J
q

k (−ν, v), (14)

where ν plays the role of a dummy variable.
In most of the previous applications one encounters the case q = 2 and in these cases one

usually simplifies the notation by dropping the p, q indices, i.e. one defines

Jn(u, v) = J 1,2
n (u, v). (15)
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2.3. Addition theorems

The addition theorem

Jp,q
n (u1 + u2, v1 + v2) =

∞∑
k=−∞

J
p,q

n−k(u1, v1)J
p,q

k (u2, v2) (16)

can be easily proved starting from (3) using (1):

Jp,q
n (u1 + u2, v1 + v2) = 1

2π

∫ +π

−π

dt ei(u1 sin pt+v1 sin qt−nt) ei(u2 sin pt+v2 sin qt)

= 1

2π

∫ +π

−π

dt ei(u1 sin pt+v1 sin qt−nt)

∞∑
k=−∞

J
p,q

k (u2, v2) eikt

=
∞∑

k=−∞
J

p,q

k (u2, v2)
1

2π

∫ +π

−π

dt ei(u1 sin pt+v1 sin qt−(n−k)t)

=
∞∑

k=−∞
J

p,q

k (u2, v2)J
p,q

n−k(u1, v1).

The Graf addition theorem for ordinary Bessel functions,
+∞∑

�=−∞
τ �J�(x1)Jn+�(x2) =

[
x2 − x1/τ

x2 − x1τ

] n
2

Jn[g(x1, x2; τ)] (17)

with

g(x1, x2; τ) = (
x2

1 + x2
2 − x1x2(τ + 1/τ)

)1/2
, (18)

can also be generalized to the two-dimensional case, at least for p = 1 in the form
+∞∑

�=−∞
τ �J

1,q

� (u1, v1)J
1,q

n+�(u2, v2) =
+∞∑

�=−∞

[
u2 − u1/τ

u2 − u1τ

] n−q�

2
[
v2 − v1/τ

q

v2 − v1τ q

] �
2

× Jn−q�[g(u1, u2; τ)]J�[g(v1, v2; τ q)] (19)

(see Dattoli et al [17, 14] for the special case q = 2). The generalized Graf addition theorem
(19) can be derived in a straightforward calculation expressing first the two-dimensional Bessel
functions as a sum over ordinary ones (see equation (13)) and using the Graf addition theorem
(17) for ordinary Bessel functions:

+∞∑
�=−∞

τ �J
1,q

� (u1, v1)J
1,q

n+�(u2, v2) =
∑
�,j,k

τ �J�−qk(u1)Jk(v1)J�+n−qj (u2)Jj (v2)

=
∑
j,k

Jk(v1)Jj (v2)τ
qk

∑
�′

τ �′
J�′(u1)Jn+q(k−j)+�′(u2)

=
∑
j,k

Jk(v1)Jj (v2)τ
qkJn+q(k−j)(g(u1, u2; τ))

[
u2 − u1/τ

u2 − u1τ

] n+q(k−j)

2

=
∑

�

[
u2 − u1/τ

u2 − u1τ

] n−q�

2

Jn−q�(g(u1, u2; τ))
∑

k

τ qkJk(v1)J�+k(v2)

=
∑

�

[
u2 − u1/τ

u2 − u1τ

] n−q�

2
[
v2 − v1/τ

q

v2 − v1τ q

] �
2

Jn−q�(g(u1, u2; τ))J�(g(v1, v2; τ q))

(20)

with g(x1, x2; τ) as defined in (18).
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2.4. Symmetries, special cases and numerical examples

From the definition (1) one verifies (by taking the complex conjugate and changing variables
t → −t) that the J

p,q
n (u, v) are real valued and satisfy

Jp,q
n (0, 0) = δn0. (21)

The symmetry relations

Jp,q
n (u, v) = J q,p

n (v, u) (22)

J
p,q
−n (u, v) = Jp,q

n (−u,−v) = J q,p
n (−v,−u) = J−p,−q

n (u, v) (23)

follow directly from the definition. For n = 0 these equations imply the symmetries

J
p,q

0 (u, v) = J
p,q

0 (−u,−v) = J
q,p

0 (v, u). (24)

A further direct result is a symmetry relation for even values of one of the p, q-indices,
say q. Using Jn(−z) = (−1)nJn(z) we get

Jp,q
n (−u, v) =

∞∑
k=−∞

JM−qk(−u)JN+pk(v)

= (−1)M
∞∑

k=−∞
JM−qk(u)JN+pk(v) = (−1)nJ p,q

n (u, v). (25)

The last equality holds because of (−1)n = (−1)pM+qN = (−1)M for q even and p odd. This
symmetry implies

Jp,q
n (0, v) = (−1)nJ p,q

n (0, v) �⇒ Jp,q
n (0, v) = 0 for n odd and q even. (26)

If both upper indices are odd, their difference must be even. This leads to another symmetry
relation

Jp,q
n (−u,−v) =

∞∑
k=−∞

JM−qk(−u)JN+pk(−v)

=
∞∑

k=−∞
(−1)M+N+(p−q)kJM−qk(u)JN+pk(v)

= (−1)M+NJp,q
n (u, v) = (−1)nJ p,q

n (u, v) for p, q odd. (27)

Here the last equality is based on the fact that for odd p, q-indices, p = 2j + 1 and q = 2k + 1,
we have n = pM + qN = M + N + 2(j + k).

In the case p = q the two-dimensional Bessel functions simplify and reduce to ordinary
Bessel functions if n is an integer multiple of p:

Jp,p
n (u, v) = 1

2π

∫ +π

−π

dt ei((u+v) sin pt−nt) = 1

2π

∫ +pπ

−pπ

ds

p
ei((u+v) sin s−ns/p)

=
{
Jn/p(u + v) for n/p ∈ N

0 else.
(28)

Another relation between the generalized and ordinary Bessel functions can be observed if the
index n is a multiple of one of the upper indices, e.g. n = mq,m integer. Then we get

Jp,q
mq (0, v) = 1

2π

∫ +π

−π

dt ei(v sin qt−mqt) = 1

2πq

∫ qπ

−qπ

ds ei(v sin s−ms)

= 1

2π

∫ +π

−π

ds ei(v sin s−ms) = Jm(v) (29)
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Figure 1. Colour map of the two-dimensional Bessel function J 1,2
n (u, v) for n = 0, n = 1, n = 2

(from left to right).
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Figure 2. Colour map of the two-dimensional Bessel function J 1,3
n (u, v) for n = 0, n = 1, n = 2

(from left to right).

and, as a special case,

Jp,1
n (0, v) = Jn(v). (30)

According to (29) the two-dimensional Bessel function J
p,q
n (0, v) is reduced to an ordinary

Bessel function Jm(v) for n = mq. Otherwise the function vanishes on the v-axis as can easily
be seen from (12):

Jp,q
n (0, v) =

∞∑
k=−∞

JM−qk(0)JN+pk(v) =
∞∑

k=−∞
δM,qkJN+pk(v) = 0, (31)

if M is not a multiple of q or, equivalently, n = pM + qN is not an integer multiple of q. We
therefore have

Jp,q
n (0, v) = 0 if n �= mq, m ∈ Z (32)

as a generalization of (26).
Let us look at a few examples of two-dimensional Bessel functions calculated numerically

using the representation (12) in terms of ordinary Bessel functions (similar graphs can be
found, e.g., in [14, 18]). Figures 1 and 2 show colour maps of J 1,2

n (u, v) and J 1,3
n (u, v) for

n = 0, n = 1 and n = 2 using a re-normalization to unit maximum in each case (the regions
of positive values are coloured red, of negative values blue).

For J 1,2
n in figure 1 we see that the symmetry relations

J
1,2
0 (−u,−v) = J

1,2
0 (u, v), J 1,2

n (−u, v) = (−1)nJ 1,2
n (u, v) (33)

are satisfied (compare equations (24) and (25)). The last relation implies a nodal line for n = 1
along the v-axis, J

1,2
1 (0, v) = 0. For the case J 1,3

n (−u,−v) in figure 2 we have the symmetry
J 1,3

n (−u,−v) = (−1)nJ 1,3
n (u, v) (compare equation (28)).
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2.5. Sum rules and Kapteyn series

The simple sum rule
∞∑

n=−∞
Jp,q

n (u, v) = 1 (34)

is a direct consequence of the generating function (1) for t = 0. A variety of sum rules for
special cases can be obtained by choosing t in (1) appropriately. For example, for the important
special case (p, q) = (1, 2) another sum rule is found by setting t = π/2:

∞∑
n=−∞

inJ 1,2
n (u, v) = eiu. (35)

Similar sum rules can be obtained for other special cases. Another sum rule,
∞∑

k=−∞

(
J

p,q

k (u, v)
)2 = 1 (36)

follows from the addition theorem (16) for the special case n = 0, u1 = −u2 = u, v1 =
−v2 = v using (21).

We furthermore note without proof the Kapteyn type series [23, 24]
∞∑

n=−∞
Jp,q

n (nu, nv) = 1

1 − pu − qv
, |pu| + |qv| < 1. (37)

2.6. Further generalizations

As already stated in the introduction, the number of variables in the Bessel function can be
extended. Different types of generalizations are, however, also possible. Modified higher
dimensional Bessel functions can be constructed, e.g. by replacing one of the ordinary Bessel
functions in (12) by a modified one [9]. In addition, two-variable, one-parameter Bessel
functions [9, 25] can be defined as a generalization of (12):

Jp,q
n (u, v; τ) =

∞∑
k=−∞

JM−qk(u)JN+pk(v)τ k. (38)

(Let us recall that (M,N) are arbitrary solutions of n = pM + qN .) Here again we find
J

p,q
n (0, 0; τ) = δn0.

In particular the case τ = eiδ is of interest [9, 15] for applications in physics. We confine
ourselves to the most important case p = 1, i.e.

J 1,q
n (u, v; eiδ) =

∞∑
k=−∞

Jn−qk(u)Jk(v) eikδ. (39)

Following the lines in the derivations above, one can easily show that these functions are
generated by

ei(u sin t+v sin(qt+δ)) =
∞∑

n=−∞
J 1,q

n (u, v; eiδ) eint , (40)

which leads to the integral representation

J 1,q
n (u, v; eiδ) = 1

2π

∫ +π

−π

dt ei(u sin t+v sin(qt+δ)−nt). (41)
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Figure 3. Colour map of the two-dimensional, one-parameter Bessel function J 1,2
n (u, v; i) for

n = 0, n = 1, n = 2 (from left to right). The figures show the real part.

The generalized Bessel functions J
1,q
n (u, v; eiδ) satisfy most of the properties of J

1,q
n (u, v), as

for example the bounds (5), the addition theorem (16) and the sum rules (34) and (36). These
function are, however, complex valued.

Figure 3 shows the real part of the Bessel functions J 1,2
n (u, v; i) for n = 0, 1, 2. A

comparison with figure 1 shows that the structure of the functions is strongly altered by the
angle parameter δ.

2.7. Differential equations and recurrence relations

Finally, we will derive recurrence relations for J
p,q
n (u, v) and their derivatives. Differentiating

the generating function (2) with respect to u leads to

1

2
(zp − z−p) e

u
2 (zp−z−p)+ v

2 (zq−z−q ) = 1

2

∞∑
n=−∞

Jp,q
n (u, v)(zn+p − zn−p) =

∞∑
n=−∞

∂uJ
p,q
n (u, v)zn.

(42)

Equating the coefficients of zn, we find

2∂uJ
p,q
n (u, v) = J

p,q
n−p(u, v) − J

p,q
n+p(u, v) (43)

and similarly

2∂vJ
p,q
n (u, v) = J

p,q
n−q(u, v) − J

p,q
n+q (u, v). (44)

If we differentiate (2) with respect to z and compare the coefficients, we find the recurrence
equation

pu
(
J

p,q
n−p(u, v) + J

p,q
n+p(u, v)

)
+ qv

(
J

p,q
n−q(u, v) + J

p,q
n+q (u, v)

) = 2nJp,q
n (u, v). (45)

These are generalizations of the relations derived by Reiss [5] for the case J 1,2
n (u, v).

Similarly one can show that the derivatives of the generalized Bessel functions (39) are
given by

2∂uJ
1,q
n (u, v; eiδ) = J

1,q

n−1(u, v; eiδ) − J
1,q

n+1(u, v; eiδ)

2∂vJ
1,q
n (u, v; eiδ) = eiδJ

1,q
n−q(u, v; eiδ) − e−iδJ

1,q
n+q(u, v; eiδ).

(46)

Using these relations one can show that the two-dimensional Bessel functions solve a variety
of linear partial differential equations, depending on their indices (p, q). These differential
equations can be constructed systematically by adding up derivatives of different order such
that the different terms J

p,q
n cancel each other for every value of n. For example the ordinary

two-dimensional Bessel functions with q = p solve the wave equation(
∂2
u − ∂2

v

)
J 1,1

n (u, v) = 0, (47)
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while the generalized Bessel functions with (p, q) = (1, 2) and δ = π/2 solve the time-
dependent Schrödinger equation [18, 26]

i∂vJ
1,2
n (u, v; i) = (−2∂2

u − 1
)
J 1,2

n (u, v; i). (48)

Furthermore, a repeated application of the differentiation rules (43), (44) and the
recurrence relations (45) leads to the coupled differential equations

[(pu∂u + qv∂v)
2 + (p2u∂u + q2v∂v) + p2u2 + q2v2 − n2]Jp,q

n (u, v)

= −pquv
(
J

p,q
n−p+q(u, v) + J

p,q
n+p−q(u, v) − 2Jp,q

n (u, v)
)

(49)

for arbitrary indices (p, q). Except from the right-hand side this equation is structurally
similar to the defining differential equation of the ordinary one-dimensional Bessel functions.
Equations (49) can be decoupled for q = νp, ν ∈ Z by applying again (45). For
(p, q) = (1,±1) this yields

[(u∂u + v∂v)
2 + (u∂u + v∂v) + (u ± v)2 − n2]J 1,±1

n (u, v) = 0, (50)

while the respective calculations for other values of q lead to more complicated results.

3. Polynomial expansion for small arguments

We will first analyse the regime of small arguments u and v and derive a leading order
polynomial expansion. Following Wasiljeff [4], we expand the u, v-dependent part of the
exponential function in (3) in a Taylor series:

Jp,q
n (u, v) = 1

2π

∫ +π

−π

ei(u sin pt+v sin qt−nt) dt (51)

= 1

2π

∞∑
k=0

1

2kk!

∫ π

−π

(u eipt − u e−ipt + v eiqt − v e−iqt )k e−int dt. (52)

Using the polynomial formula

(a + b + c + d)j = j !
∑

α,β,σ,ζ

′ aα

α!

bβ

β!

cσ

σ !

dζ

ζ !
, (53)

where the primed sum runs over all indices with j = α+β +σ +ζ , one obtains after rearranging
terms and carrying out the integration the series expansion

Jp,q
n (u, v) =

∞∑
j=0

1

2j

∑
α,β,σ,ζ

′′ uα+βvσ+ζ

α!β!σ !ζ !
. (54)

Here the double-primed sum includes all nonnegative integers with

j = α + β + σ + ζ and n = (α − β)p + (σ − ζ )q. (55)

The sum can be transformed into a more convenient form by introducing � = α + β, 2f =
� + α − β,m = σ + ζ and 2g = m + σ − ζ . After some elementary algebra, this yields

Jp,q
n (u, v) =

∑
�,m�0

a
(n,p,q)

�,m

umv�

2�+m
(56)

with

a
(n,p,q)

�,m =
∑

f =0,...,+�
g=0,...,+m

n=p(2f −�)+q(2g−m)

1

f !(� − f )!g!(m − g)!
. (57)
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The lowest order approximation in this expansion can be found in explicit form for the case
p = 1. Then the lowest order term in (54) is given by2

(α, β, σ, ζ ) =




(
n − q

⌊
n

q

⌋
, 0,

⌊
n

q

⌋
, 0

)
if

n

q
/∈ N and 2q mod(n, q) � q + 1

(
0,−n + q

⌈
n

q

⌉
,

⌈
n

q

⌉
, 0

)
if

n

q
/∈ N and 2q mod(n, q) � q + 1

(
0, 0,

n

q
, 0

)
if

n

q
∈ N. (58)

In most cases it is given by a single term, as for example in

J
1,2
3 (u, v) ∼ 1

22
uv, J

1,2
4 (u, v) ∼ 1

22
v2. (59)

Note that, because n = 3 is not a multiple of q = 2, the Bessel function J
1,2
3 is identically

equal to zero on the v-axis (see equation (32)); however, J
1,2
3 and J

1,2
4 do not vanish on the

u-axis, where we have J 1,2
n (u, 0) = Jn(u) ∼ (u/2)n/n! (see equation (30)).

In certain cases more terms of the same minimum order j appear. This happens if n
q

/∈ N

and 2q mod(n, q) = q + 1. One can easily check that this requires that q is odd, q = 2ν + 1
and n = µq + ν + 1 with ν, µ ∈ N. In this case, the lowest order approximation reads

J 1,q
n (u, v) ∼ uνvµ

2ν+µ+1ν!µ!

(
u

ν + 1
+

v

µ + 1

)
. (60)

This yields the (approximate) nodal line

v = −µ + 1

ν + 1
u (61)

for small u and v. As an example, we note q = 5 and n = 23, i.e. ν = 2 and µ = 4 and
therefore

J
1,5
23 (u, v) ∼ u2v4

272!4!

(u

3
+

v

5

)
. (62)

4. Asymptotic approximations

In the examples of two-dimensional Bessel functions J
p,q
n (u, v) shown in figures 1 and 2

for (p, q) = (1, 2) and (p, q) = (1, 3), respectively, one observes a rich oscillatory
structure which will be analysed in the following. The skeleton of this structure and
valuable approximations can be obtained asymptotically by means of the stationary phase
approximation ∫ π

−π

dt h(t) eig(t) 

∑

ts

√
2π

±g′′(ts)
h(ts) eig(ts )±iπ/4. (63)

The sum extends over all contributing real stationary points and the ± sign is chosen so
that ±g′′(ts) is positive (see, e.g., [27] for more details). Previous studies of asymptotic
approximations for two-dimensional Bessel functions [3, 10, 28] have been restricted to the
case p = 1, q = 2 and special regions of the index n and arguments u, v.

Information about the oscillatory structure of the multivariable Bessel functions J
p,q
n (u, v)

can be obtained from asymptotic approximations for large arguments and/or large indices.

2 Notation: �x� is the largest integer � x, x� is the smallest integer > x and mod(n, q) = n
q

− � n
q
�.
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We will consider three of the number of possible limits: the case when both arguments u and
v are large, whereas n remains fixed, and the case where one argument, v, and the index n are
large for fixed value of the argument u. Finally we will consider the limit where both variables
as well as the index n are large. In all cases we assume small fixed values of the indices p and
q.

4.1. Basic structure for large arguments u and v

We base our analysis on the integral representation (3)

Jp,q
n (u, v) = 1

2π

∫ +π

−π

dt ei(φ(t)−nt), φ(t) = u sin pt + v sin qt. (64)

Here we will consider the asymptotic limit of large arguments u and v assuming that n is fixed,
i.e. we identify g(t) = φ(t) in an application of (63). The condition

φ′(t) = pu cos pt + qv cos qt = 0 (65)

determines the stationary points ts (note that there are always pairs of such stationary points
with different sign due to the symmetry of the cosine function). The integral (64) is then
approximately given by

Jp,q
n (u, v) =

∑
ts

1√
2π |φ′′(ts)|

ei(φ(tj )−nts±π/4), (66)

where the ± sign is given by the sign of φ′′(tj ). The main contribution to the sum is provided
by real-valued stationary points, complex ones lead to exponentially decaying terms. At the
points where two stationary points coalesce when the arguments u and v are varied, the second
derivative

φ′′(t) = −p2u sin pt − q2v sin qt (67)

vanishes and the approximation diverges. Crossing these bifurcation points, the function
changes its character. In the present case, the bifurcations are determined by the simultaneous
solution of

pu cos pts = −qv cos qts and p2u sin pts = −q2v sin qts . (68)

This can be most easily satisfied if both sides of one of the two equations are equal to zero.
We distinguish two cases.

Case (i) sin pts = − sin qts = 0: for coprime p and q, this implies ts = 0 or ts = π

and therefore (from pu cos pts = −qv cos qts) we have pu = −qv or pu = −(−1)p+qqv,
respectively. We therefore obtain the bifurcation lines

v = ±pu/q if one of the p, q is even (69)

v = −pu/q else. (70)

Case (ii) cos pts = cos qts = 0: this implies pts = π/2 + jπ and qts = π/2 + kπ with integer
j and k or (2k + 1)p = (2j + 1)q and (for coprime p and q) p = 2j + 1 and q = 2k + 1 . With
sin pts = sin(π/2 + jπ) = (−1)j and sin qts = sin(π/2 + kπ) = (−1)k the second condition
in (68) leads to

v = −(−1)j+kup2/q2 p = 2j + 1, q = 2k + 1. (71)

The examples in figure 1 show Bessel functions J 1,2
n (u, v) for various values of n. Here

q is even and from equation (70) we find the bifurcation lines

v = ±u/2. (72)
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We observe that the structure of the Bessel functions changes if one crosses these lines. In the
left and right sectors, we have only two stationary points, ±t1, whereas in the upper and lower
sectors we have four stationary points, ±t1 and ±t2, and consequently a richer interference
pattern. This will be analysed in more detail below.

For the two-dimensional Bessel function J 1,3
n (u, v) displayed in figure 2 both upper

indices are odd and the bifurcation lines are given by equations (70) and (71):

v = −u/3 and v = u/9. (73)

The qualitative difference to the behaviour of J 1,2
n (u, v) in figure 1 is obvious.

Let us now analyse the function J 1,2
n (u, v) in more detail working out explicitly the

stationary phase approximation. In view of the symmetry J 1,2
n (u, v) = J

1,2
−n (−u,−v) (23) we

can assume v > 0 in the following for simplicity. The stationary phase condition

u cos t = −2v cos 2t = −2v(2 cos2 t − 1) (74)

can be solved for c = cos t with solution

c± = 1
8 (−u/v ±

√
(u/v)2 + 32). (75)

In the region −2 < u/v < +∞ the necessary condition |c±| � 1 is met by c+ and vice versa
by c− in the region −∞ < u/v < +2. Note that in the interval −2 < u/v < +2 both solutions
fulfil |c±| � 1. With t± = arccos c± and sin t± = ±

√
1 − c2

± we arrive at

φ± = u sin t± + v sin 2t± = ±(u + 2vc±)

√
1 − c2± (76)

φ′′
± = −u sin t± − 4v sin 2t± = ∓(u + 8vc±)

√
1 − c2± (77)

and with the definitions

F+(u, v) =




√
2

π |φ′′
+| cos

(
φ+ − n arccos c+ − π

4

)
for −2v < u

0 else

(78)

F−(u, v) =




√
2

π |φ′′−| cos
(
φ− + n arccos c− − π

4

)
for u < +2v

0 else

(79)

the final result can be written as

J 1,2
n (u, v) 
 F+(u, v) + F−(u, v). (80)

Here one should be aware of the fact that in the region |u| � 2|v| both of the terms F±(u, v)

provide a non-vanishing contribution.
This so-called ‘primitive’ stationary phase approximation diverges at the bifurcation lines

v = ±2u. If desired, it can be improved by taking complex stationary points into account and
by taming the divergences by uniformization methods.

In the limit |u| → ∞ the asymptotic approximation (80) simplifies drastically. Only F+

contributes for u > 0 (F− for u < 0) and with t± = ±π/2, φ± = φ′′
± = ±u we find

J 1,2
n (u, v) 


√
2

π |u| cos
(
u − n

π

2
− π

4

)
, (81)
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Figure 4. Two-dimensional Bessel functions J 1,2
n (u, v) with v = 10 for n = 0 (left) and n = 1

(right) as a function of u (full curve) in comparison with the stationary phase approximation (80)
(open circles).

which agrees with the well-known asymptotic approximation of the ordinary Bessel function
Jn(u) for large arguments [29]. In the alternative limit v → ∞ both terms, F+ and F−
contribute. With c± = − u

8v
± 1√

2
, φ± = v ± u√

2
and φ′′

± = ±4v we obtain

J 1,2
n (u, v) 


√
2

πv




+ cos
(
v − (n + 1)

π

4

)
cos

u√
2

n even

−sin
(
v − (n + 1)

π

4

)
sin

u√
2

n odd,
(82)

as already derived in [14].
As an illustration of the asymptotic formula (80), figure 4 shows the two-dimensional

Bessel function J 1,2
n (u, v) in comparison with the stationary phase approximation for v = 10

and n = 0, 1. With the exception of the vicinity of the divergences at u = ±2v = ±20, the
agreement is excellent. This approximation can be used in order to determine the nodal lines
of the two-dimensional Bessel functions which is of interest for applications in physics [15].

4.2. Large argument v and large index n

In this section we will consider the regime where the index n and one of the arguments, e.g. v,
are large. In view of (23), we can assume n � 0. Following the analysis applied to the special
case J 1,2

n (u, v) by Reiss and Krainov [10], we separate the integral representation (3) into a
fast, eig(t), and a slowly oscillating part:

Jp,q
n (u, v) = 1

2π

∫ π

−π

dt eiu sin pt eig(t), g(t) = v sin qt − nt, (83)

and evaluate the integral approximately by the method of stationary phase or the saddle point
method if the stationary points are complex valued (for details see, e.g., [27]).

The stationary points ts of g(t) are obtained from g′(ts) = 0 as

cos qts = n

qv
(84)

with real-valued solutions for n < q|v| and complex solutions otherwise. We discuss these
two cases separately.

(i) For n < q|v| the stationary points are

t±s = ±(t0 + 2πs/q), s = 0, 1, 2, . . . , t0 = 1

q
arccos

n

qv
, (85)

i.e. a finite number in the interval −π < t±s � π .
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With sin qt±s = ±sin qt0 we have

g
(
t±s

) = v sin qt±s − nt±s = ±v sin t0 ∓ n(t0 + 2πs/q)] (86)

g′′(t±s ) = −q2v sin qts = ∓q2v sin qt0 (87)

and, using sin pt±s = ±sin p(t0 + 2πs/q), the final result is

Jp,q
n (u, v) 


√
1

2πq2v sin qt0

∑
s,±

e±i[u sin p(t0+ 2πs
q

)+v sin qt0−n(t0+ 2πs
q

)− π
4 ]

=
√

2

πq2v sin qt0

∑
s

cos

[
u sin p

(
t0 +

2πs

q

)
+ v sin qt0 − n

(
t0 +

2πs

q

)
− π

4

]
.

(88)

We will work out the case p = 1 and q = 2 in more detail. Here we find four stationary points
±(t0 + sπ) with s = 0 and −1 and therefore

J 1,2
n (u, v) 


√
1

2πv sin 2t0

{
cos

[
u sin t0 + v sin 2t0 − nt0 − π

4

]

+ (−1)n cos
[
−u sin t0 + v sin 2t0 − nt0 − π

4

] }

=
√

2

πv sin 2t0




+ cos(u sin t0) cos
(
v sin 2t0 − nt0 − π

4

)
n even

−sin(u sin t0) sin
(
v sin 2t0 − nt0 − π

4

)
n odd

(89)

with

t0 = 1

2
arccos

n

2v
, sin 2t0 =

√
1 − n2

4v2
, sin t0 =

√
1

2
− n

4v
. (90)

In comparison with the semiclassical approximation derived in section 4.1, the result (89)
agrees approximately with (80) also for small values of n, as for example J

1,2
0 (u, v) shown in

figure 4 for v = 10. Equation (89) misses however the structural transition at |u| = 2v and
cannot describe the region |u| > 2v.

(ii) For n > q|v| the stationary points (85) are complex, ts = xs + iy with real part

xs =
{

2sπ/q, v > 0
(2s + 1)π/q, v < 0

, s = 0,±1,±2, . . . (91)

with −π < xs � +π . The imaginary part is the same for all s:

y± = ± 1

q
arccosh

(
n

q|v|
)

. (92)

The integral is approximately carried out by the saddle point integration, where the integration
path is deformed to a steepest decent curve passing through the saddle points [27]:∫ π

−π

dt h(t) eig(t) 

∑

s

√
2π

−ig′′(ts)
h(ts) eig(ts ). (93)

The second derivative is

ig′′(ts) = −ivq2 sin qts = −q2v sinh qy (94)
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Figure 5. Comparison of the asymptotic approximation (97) (open circles) with the exact two-
dimensional Bessel function J 1,2

n (u, v) (full line) for n = 30. Left: case (i) for v = 64 using
equation (89). Middle: case (ii) with v = −12 using equation (97). Right: case (ii) with v = +12
using equation (99).

and the conditions for the integration path [27] can only be satisfied for the saddle points in
the upper (lower) complex plane for v > 0 (v < 0). With

ig(ts) = i(v sin qts − nts) = −v sinh qy − inxs − ny (95)

we obtain the result

Jp,q
n (u, v) = e−|v sinh qy|−n|y|√

2πq2|v sinh qy|
∑

s

e−inxs eiu sin p(xs+iy). (96)

Let us again consider the special case p = 1, q = 2 in more detail. Two saddle points
contribute (xs = ±π/2 with y− for v < 0 or xs = 0 and π with y+ for v > 0) and
equation (96) simplifies.

For v < 0 we find

J 1,2
n (u, v) = e+v sinh 2y−ny

√−2πv sinh 2y
cos

(
u cosh y − n

π

2

)
(97)

with

y = 1

2
arccosh

n

2|v| , sinh 2y =
√

n2

4v2
− 1, cosh y =

√
n

4|v| +
1

2
(98)

in agreement with the result derived in [10].
For v > 0 the resulting approximation is non-oscillatory:

J 1,2
n (u, v) = e−v sinh 2y−ny√

4π
√

2v sinh 2y

{
cosh(u sinh y) n even
sinh(u sinh y) n odd

(99)

with

y = 1

2
arccosh

n

2v
, sinh y =

√
n

4v
− 1

2
. (100)

Note that both asymptotic approximations (89) and (99) satisfy the symmetry relation
Jn(−u, v) = (−1)nJn(u, v) (cf equation (25)).

Figure 5 demonstrates the quality of the asymptotic approximation for n = 30 and v = 64
(case (i)) or v = −12 (case (ii)). Reasonable agreement is observed for |u| < 10. These
simple approximations get worse in the vicinity of n = q|v| where they diverge. A finite result
can be obtained using an appropriate uniformization technique, in the present case a Bessel
uniformization, e.g. a mapping onto an (ordinary) Bessel function [30] (see also [28] for an
alternative method).



14962 H J Korsch et al

u

v

40 20 0 20 40

− 40

20

0

20

40

u

v

40 20 0 20 40

40

20

0

20

40

−

− −

−

−

− −

Figure 6. Colour map of the two-dimensional Bessel functions J 1,2
n (u, v) for n = 29 (left) and

n = 30 (right). Note the different symmetries of these functions. Their overall structure can be
explained by means of the bifurcation set shown in figure 7.

The asymptotic approximations (89) and (97) provide explicit estimates for the nodal
lines of J 1,2

n (u, v). For n < 2|v| we find

u

√
1

2
− n

4v
=

{
(2j + 1) π

2 n even

jπ n odd
, j = 0,±1,±2, . . . . (101)

and for n > 2|v| we have for v < 0 zeros at

u

√
1

2
− n

4v
= (2j + n)

π

2
, j = 0,±1,±2, . . . . (102)

These results are, of course, in agreement with the zeros observed in figure 5.

4.3. Large arguments u, v and large index n

As an example of the structure of the two-dimensional Bessel functions for large indices,
figure 6 shows J 1,2

n (u, v) for n = 29 and n = 30. These functions look quite similar, they are
clearly distinguished, however, by their symmetry property J 1,2

n (−u, v) = (−1)nJ 1,2
n (u, v)

(see equation (25)), i.e. J
1,2
30 is even and J

1,2
29 is odd with respect to a reflection u → −u.

Therefore J
1,2
29 vanishes on the v-axis, J

1,2
29 (0, v) = 0. The function J

1,2
30 is symmetric on the

v-axis: J 1,2
n (0,−v) = J 1,2

n (0, v) (see equation (32)), despite of the apparent asymmetry with
respect to the reflection v → −v.

In additions to the oscillatory pattern in the four sectors, we observe a region close to the
centre where the values of the Bessel functions are small. This pattern can again be explained
by a consideration of the asymptotic limit where both arguments and the index n are large
using

g(t) = u sin pt + v sin qt − nt (103)

in the stationary phase approximation (63). The stationary points ts are determined by

g′(ts) = pu cos pts + qv cos qts − n = 0. (104)

The zeros of the second derivative

g′′(t) = −p2u sin pt − q2v sin qt (105)

appearing in the denominator of (63) determine the bifurcation set of these solutions.
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Figure 7. Bifurcation curves of the stationary points for the two-dimensional Bessel function
J

1,2
30 (u, v).

Restricting ourselves again to the case (p, q) = (1, 2) these equations simplify and can
be solved in closed form:

g′(ts) = u cos ts + 2v cos 2ts − n = 0 (106)

with solutions

c± = cos ts = − u

8v
±

√( u

8v

)2
+

1

2
+

n

4v
(107)

(here again each solution c± implies two stationary points ts because of the symmetry of the
cosine function). The bifurcation set—the skeleton of the Bessel function—is found when

g′′(ts) = −u sin ts − 4v sin 2ts = 0 (108)

is satisfied in addition to (106). Eliminating ts we find the solutions

v = (n ± u)/2 (109)

(note that for |u| � n these straight lines agree with those stated above in equation (72)) and
the ellipse

16(v + n/4)2

n2
+

u2

2n2
= 1 (110)

centred at (u, v) = (0,−n/4) with half axes
√

2n and n/4. Inside this ellipse the stationary
points (107) are complex, outside they are real. A brief calculation furthermore shows that
the straight lines (109) are tangential to the ellipse (110). This bifurcation set is shown in
figure 7. In the upper sector (I) between the bifurcation lines we have −1 < c± < +1, as well
as in the lower sector (II) outside the ellipse. Hence we have four real solutions ts in these
regions and a corresponding oscillatory pattern. In the right sector (IV) two of these solutions
become complex because of |c+| > 1 and similarly in the left-hand sector (III) with |c−| > 1.
In the triangular segment (V) in the lower sector above the ellipse, we have |c+| > 1 and
|c−| > 1 and therefore no real stationary points. In the elliptic region with complex valued
stationary points, the Bessel function is damped but still oscillatory. An example is shown
in figure 5 (right-hand side) which shows a cut through the Bessel function J

1,2
30 (u, v) shown

in figure 6 for v = −12 close to the elliptic bifurcation curve. A cut at v = 64 (left-hand
side) shows the oscillations in region (I). Note that the semiclassical approximations shown in
figure 5 are the simplified versions developed in section 4.2. A more refined semiclassical
analysis along the lines discussed above will provide a much better agreement for larger values
of u (compare also the treatment in [5]).
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